Highest vectors of representations (total 13) ; the vectors are over the primal subalgebra. | \(g_{-5}\) | \(h_{5}\) | \(g_{5}\) | \(g_{4}\) | \(g_{9}\) | \(g_{13}\) | \(g_{19}+8/9g_{2}+5/9g_{1}\) | \(g_{18}+5g_{10}\) | \(g_{14}\) | \(g_{17}\) | \(g_{20}\) | \(-g_{23}+5/8g_{22}\) | \(g_{25}\) |
weight | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(5\omega_{1}\) | \(5\omega_{1}\) | \(6\omega_{1}\) | \(6\omega_{1}\) | \(10\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-4\psi\) | \(0\) | \(4\psi\) | \(\omega_{1}-2\psi\) | \(\omega_{1}+2\psi\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(5\omega_{1}-2\psi\) | \(5\omega_{1}+2\psi\) | \(6\omega_{1}\) | \(6\omega_{1}\) | \(10\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{-4\psi} \) → (0, -4) | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{4\psi} \) → (0, 4) | \(\displaystyle V_{\omega_{1}-2\psi} \) → (1, -2) | \(\displaystyle V_{\omega_{1}+2\psi} \) → (1, 2) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0) | \(\displaystyle V_{5\omega_{1}-2\psi} \) → (5, -2) | \(\displaystyle V_{5\omega_{1}+2\psi} \) → (5, 2) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0) | \(\displaystyle V_{10\omega_{1}} \) → (10, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) | \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-4\psi\) | \(0\) | \(4\psi\) | \(\omega_{1}-2\psi\) \(-\omega_{1}-2\psi\) | \(\omega_{1}+2\psi\) \(-\omega_{1}+2\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(5\omega_{1}-2\psi\) \(3\omega_{1}-2\psi\) \(\omega_{1}-2\psi\) \(-\omega_{1}-2\psi\) \(-3\omega_{1}-2\psi\) \(-5\omega_{1}-2\psi\) | \(5\omega_{1}+2\psi\) \(3\omega_{1}+2\psi\) \(\omega_{1}+2\psi\) \(-\omega_{1}+2\psi\) \(-3\omega_{1}+2\psi\) \(-5\omega_{1}+2\psi\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-4\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi}\) | \(\displaystyle M_{\omega_{1}-2\psi}\oplus M_{-\omega_{1}-2\psi}\) | \(\displaystyle M_{\omega_{1}+2\psi}\oplus M_{-\omega_{1}+2\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{5\omega_{1}-2\psi}\oplus M_{3\omega_{1}-2\psi}\oplus M_{\omega_{1}-2\psi}\oplus M_{-\omega_{1}-2\psi}\oplus M_{-3\omega_{1}-2\psi} \oplus M_{-5\omega_{1}-2\psi}\) | \(\displaystyle M_{5\omega_{1}+2\psi}\oplus M_{3\omega_{1}+2\psi}\oplus M_{\omega_{1}+2\psi}\oplus M_{-\omega_{1}+2\psi}\oplus M_{-3\omega_{1}+2\psi} \oplus M_{-5\omega_{1}+2\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-4\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi}\) | \(\displaystyle M_{\omega_{1}-2\psi}\oplus M_{-\omega_{1}-2\psi}\) | \(\displaystyle M_{\omega_{1}+2\psi}\oplus M_{-\omega_{1}+2\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{5\omega_{1}-2\psi}\oplus M_{3\omega_{1}-2\psi}\oplus M_{\omega_{1}-2\psi}\oplus M_{-\omega_{1}-2\psi}\oplus M_{-3\omega_{1}-2\psi} \oplus M_{-5\omega_{1}-2\psi}\) | \(\displaystyle M_{5\omega_{1}+2\psi}\oplus M_{3\omega_{1}+2\psi}\oplus M_{\omega_{1}+2\psi}\oplus M_{-\omega_{1}+2\psi}\oplus M_{-3\omega_{1}+2\psi} \oplus M_{-5\omega_{1}+2\psi}\) | \(\displaystyle 2M_{6\omega_{1}}\oplus 2M_{4\omega_{1}}\oplus 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}}\oplus 2M_{-4\omega_{1}}\oplus 2M_{-6\omega_{1}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) |
2\\ |